If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x+35=0
a = 7; b = 35; c = +35;
Δ = b2-4ac
Δ = 352-4·7·35
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7\sqrt{5}}{2*7}=\frac{-35-7\sqrt{5}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7\sqrt{5}}{2*7}=\frac{-35+7\sqrt{5}}{14} $
| x^2-2x-8=4^2 | | 44=4x-(-8) | | 3(3w+5)/5=8 | | a÷5+8=11 | | 44=4x-8 | | 4x-1=33 | | (K^2)-(5k)+(6)=0 | | y=1/2-(2)-3 | | 8a+a/2=112 | | v+-10=-1 | | -2=q/2 | | 4p-2=6-2p | | n+-12=-5 | | 42=11x-13 | | x-2/5=1/6 | | 6+8k=6(1-6k) | | 19x+3=11x+2+9x+1 | | -8(x+2)=-x-37 | | -7+2x=4(2x+10)+x | | 3x+11x=-7+x | | 5-7(v-8)=v+37 | | -8+3n=-8(4n+1) | | 5y^2+3y=120 | | 5-10x=2+8(7-6x) | | 12(x-3)=4(3x+3)=4(3x+9) | | 1/(2x)+2/(6x)=1+2/(7x) | | -7(3+8n)-8n=-149 | | 3/4(x+2)=6(x+12 | | 308=7(4+8v) | | 4x-15=47 | | -2(x-4)+1=13 | | 17x+(-6)=6x+6 |